
 Analyse production performance with Stack-driver Profiler

 Sanjam singh1

1Student of Information and Technology Engineering, Chandigarh University, Gharuan, Punjab, India

 ssanjam20@gmail.com1

 Abstract

Google Stackdriver could be a freemium, mastercard needed, cloud computing systems management

service offered by Google. It provides performance and medicine information to public cloud users.

Stackdriver could be a hybrid cloud answer, providing support for each Google Cloud and AWS cloud

environments. This analysis paper Analyses the assembly within the performance with the assistance

of Stack-driver Profiler and check out to boost the code's performance, equivalent techniques that

haven't been nearly as accessible or well adopted by people who work on backend services. whereas

shopper app and frontend internet developers usually use tools just like the automaton Studio central

processing unit Profiler or the identification tools enclosed in Chrome. Stackdriver Profiler brings these

same capabilities to service developers, notwithstanding whether or not their code is running on the

Google Cloud Platform.

Keywords: Stack-driver Profiler, Google Cloud Platform, cloud infrastructure, Profiler interface,
environment setup.

I. Introduction

Understanding the performance of production systems is notoriously tough. making an attempt to live

performance in check environments typically fails to duplicate the pressures on a production system.

small benchmarking components of your application is typically possible, however it additionally

usually fails to duplicate the employment and performance of a production system. Continuous

identification of production systems is an efficient thanks to discover wherever resources like electronic

equipment cycles and memory ar consumed as a service operates in its operating atmosphere. however

identification adds an extra load on the assembly system: so as to be a suitable thanks to discover

patterns of resource consumption, the extra load of identification should be tiny. Stackdriver Profiler

may be a applied math, low-overhead profiler that endlessly gathers electronic equipment usage and

memory-allocation data from your production applications. It attributes that data to the ASCII text file

that generated it, serving to you determine the components of your application that ar overwhelming

the foremost resources, and otherwise illuminating your applications performance characteristics.

Stackdriver the corporate was created in 2012 by founders Dan Belcher and Izzy ethnic group. The

company's goal was to supply consistent watching across cloud computing's multiple service layers,

employing a single SaaS resolution. Stackdriver secured $5 million funding from Bain Capital Ventures

in Gregorian calendar month 2012. A beta version of the merchandise became publically offered on

April thirty, 2013. In might 2014, the Stackdriver company was nonheritable by Google. Associate in

Nursing dilated version of the merchandise was rebranded as Google Stackdriver and was launched to

general handiness in Oct, 2016.

Example of Stackdriver: Site24x7 offers a centralized approach to observe your virtual infrastructure,

on-premises IT atmosphere, and cloud infrastructure–all on one platform:

1. Monitor usage and performance for infrastructure and PaaS running in your Amazon internet

Service atmosphere.

2. Get a comprehesive read into the health of your EC2 server instances.

3. Monitor resource utilization and operational health of 100+ Azure services.

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

410

IJSER © 2019
http://www.ijser.org

IJSER

mailto:ssanjam20@gmail.com1

4. Analyze virtual machine workloads and host resource utilization on your vSphere

atmosphere.

5. Check standing of your jack containers.

 Figure1, Example of Site24x7

II. Supporting Stackdriver

Stackdriver Profiler supports differing types of identification supported the language during which a

program is written. the subsequent table summarizes the supported profile varieties by language:

 Table1, supporting profile type by different languages

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

411

IJSER © 2019
http://www.ijser.org

IJSER

When you instrument your application to capture profile knowledge, you embrace a language-specific

identification agent. the subsequent table summarizes the supported environments:

 Table2, supporting environments by different languages

The following table summarizes the supported operative systems:

 Table3, supporting operating systems by different languages

III. Google Stackdriver's main features

1) Stackdriver observation measures the health of cloud resources and applications by providing

visibility into metrics like central processor usage, disk I/O, memory, network traffic and period of

time. it's supported collectd, associate open supply daemon that collects system and application

performance metrics. Users will receive customizable alerts once Stackdriver observation discovers

performance problems. it's wont to monitor Google reason Engine and Amazon EC2 VMs.

2) Stackdriver Error reportage identifies and analyzes cloud application errors. A centralized error

management interface provides IT groups with time period visibility into production errors with cloud

applications, moreover because the ability to kind and filter content supported the quantity of error

occurrences, once the error was initial and last seen, and wherever the error is found.

3) Stackdriver computer programme inspects the state of associate application, deployed in Google

App Engine or Google reason Engine, exploitation production information and ASCII text file.

throughout production, snapshots may be taken of associate application's state and connected back to a

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

412

IJSER © 2019
http://www.ijser.org

IJSER

selected line location within the ASCII text file, while not having to feature work statements. This

examination will occur while not moving the performance of the assembly application.

4) Stackdriver Trace collects network latency information from applications deployed in Google App

Engine. Trace information is gathered, analyzed and wont to produce performance reports to spot

network bottlenecks. Trace API and Trace SDK may be wont to trace, analyze and optimize custom

workloads, as well.

5) Stackdriver work provides time period log management and analysis for cloud applications. Log

information may be unbroken for extended periods of your time by archiving it with Google Cloud

Storage. The service works with each Google and AWS, and may gather logs from Google reason

Engine, Google App Engine and Amazon EC2.

IV. Profiler interface

Client app and frontend internet developers normally use tools just like the mechanical man Studio

mainframe Profiler or the identification tools enclosed in Chrome to enhance their code's performance,

equivalent techniques haven't been nearly as accessible or well adopted by people who work on backend

services. Stackdriver Profiler brings these same capabilities to service developers, despite whether or

not their code is running on the Google Cloud Platform or elsewhere.

 Figure2, Profiler interface

The tool gathers hardware usage and memory-allocation data from your production applications. It

attributes that data to the application's computer code document, serving to you identify the weather of

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

413

IJSER © 2019
http://www.ijser.org

IJSER

the appliance overwhelming the foremost resources, and otherwise illuminating the performance

characteristics of the code. Low overhead of the gathering techniques utilised by the tool makes it

applicable for continuous use in production environments. throughout this codev research laboratory,

we'll resolve the way to line up Stackdriver Profiler for a Go program and may get at home with what

moderately insights regarding application

4.1.What we learn in Stackdriver Profiler

(1) How to configure a Go program for profiling with Stackdriver Profiler.

(2) How to collect, view and analyze the performance data with Stackdriver Profiler.

4.2.What we need
i) A Google Cloud Platform project.

ii) A browser, such Chrome or Firefox.

iii) Familiarity with standard Linux text editors such as Vim, EMACs or Nano.

iv) Setup and Requirements.

v) Self-paced environment setup.

If you don't already have a Google Account (Gmail or Google Apps), we must create one. Sign-in to

Google Cloud Platform console (console.cloud.google.com) and create a new project:

 Figure3, how to create Google Cloud projects

4.3.Steps of using Google Cloud projects

i) Remember the project ID, a unique name across all Google Cloud projects (the name above has

already been taken and will not work for you, sorry!). It will be referred to later in this codelab

as PROJECT_ID.

ii) Next, you'll need to enable billing in the Cloud Console in order to use Google Cloud resources.

iii) Running through this codelab shouldn't cost you more than a few dollars, but it could be more if

you decide to use more resources or if you leave them running (see "cleanup" section at the end of

this document).

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

414

IJSER © 2019
http://www.ijser.org

IJSER

iv) New users of Google Cloud Platform are eligible for a $300 free trial.

v) Google Cloud Shell

vi) While Google Cloud can be operated remotely from your laptop, to make the setup simpler in this

codelab we will be using Google Cloud Shell, a command line environment running in the Cloud.

vii) Activate Google Cloud Shell

From the GCP Console click the Cloud Shell icon on the top right toolbar:

 Figure4, click "Start Cloud Shell"

It should only take a few moments to provision and connect to the environment:

i) This virtual machine is loaded with all the development tools you'll need. It offers a

persistent 5GB home directory, and runs on the Google Cloud, greatly enhancing network

performance and authentication. Much, if not all, of your work in this lab can be done with

simply a browser or your Google Chromebook.

ii) Once connected to the cloud shell, you should see that you are already authenticated and

that the project is already set to your PROJECT_ID.

 Figure5, how to start

iii) Run the following command in the cloud shell to confirm that you are authenticated:

(1) gcloud auth list

(2) Command output

(3) Credentialed accounts

(4) - <myaccount>@<mydomain>.com (active)

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

415

IJSER © 2019
http://www.ijser.org

IJSER

https://cloud.google.com/cloud-shell/

 Figure6, run of start cloud shell

(5) gcloud config list project

(6) Command output

(7) [core]

(8) project = <PROJECT_ID>

If it is not, you can set it with this command:

(9) gcloud config set project <PROJECT_ID>

(10) Command output

(11) Updated property [core/project].

V. Navigate to Stackdriver Profiler

In Cloud Console, navigate to the Profiler UI by clicking on "Profiler" in the left navigation bar:

 Figure7, Navigate to Stackdriver Profiler

Alternatively you'll use the Cloud Console search bar to navigate to the Profiler UI: simply sort

"Stackdriver Profiler" and choose the found item. Either way, you must see the Profiler UI with the "No

information to display" message like below. The project is new, thus it does not have any identification

information collected nonetheless.

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

416

IJSER © 2019
http://www.ijser.org

IJSER

 figure8,when no data to display

It's now time to get something profiled!

The directory contains the "main.go" file, which is a synthetic app that has the profiling agent enabled:

Code:

main.go

...

import (

 ...

 "cloud.google.com/go/profiler"

)

...

func main() {

 err := profiler.Start(profiler.Config{

 Service: "hotapp-service",

 DebugLogging: true,

 MutexProfiling: true,

 })

 if err != nil {

 log.Fatalf("failed to start the profiler: %v", err)

 }

 ...

}

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

417

IJSER © 2019
http://www.ijser.org

IJSER

The profiling agent collects CPU, heap and thread profiles by default. The code here enables the

collection of mutex (also known as "contention") profiles.

Now, run the program:

$ go run main.go

As the program runs, the identification agent can sporadically collect profiles of the 5 designed sorts.

the gathering is irregular over time (with average rate of 1 profile per minute for every of the types),

therefore it's going to take up to a few minutes to induce every of the kinds collected. The program tells

you once it creates a profile. The messages square measure enabled by the DebugLogging flag within

the configuration above; otherwise, the agent runs silently:

$ go run main.go

2018/03/28 15:10:24 profiler has started

2018/03/28 15:10:57 successfully created profile THREADS

2018/03/28 15:10:57 start uploading profile

2018/03/28 15:11:19 successfully created profile CONTENTION

2018/03/28 15:11:30 start uploading profile

2018/03/28 15:11:40 successfully created profile CPU

2018/03/28 15:11:51 start uploading profile

2018/03/28 15:11:53 successfully created profile CONTENTION

2018/03/28 15:12:03 start uploading profile

2018/03/28 15:12:04 successfully created profile HEAP

2018/03/28 15:12:04 start uploading profile

2018/03/28 15:12:04 successfully created profile THREADS

2018/03/28 15:12:04 start uploading profile

2018/03/28 15:12:25 successfully created profile HEAP

2018/03/28 15:12:25 start uploading profile

2018/03/28 15:12:37 successfully created profile CPU

...

 Figure9, DebugLogging

The UI can update itself shortly once initial of the profiles is collected. It will not auto-update then, thus

to check the new information, you will need to refresh the Profiler UI manually. To do that, click the

currently button within the interval picker twice:

 Figure10, click "now"

After the UI refreshes, you will see something like this:

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

418

IJSER © 2019
http://www.ijser.org

IJSER

 Figure11, stackdriver profile

The profile type selector shows the five profile types available:

 Figure12, the five profile types

Let's now review each of the profile types and some important UI capabilities, and then conduct some

experiments. At this stage, you no longer need the Cloud Shell terminal, so you can exit it by pressing

CTRL-C and typing "exit".

VI. Analyse the Profiler Data

a. CPU-intensive Code

Select the CPU profile type. After the UI loads it, you'll see in the flame graph the four leaf blocks

for load function, which collectively account for all the CPU consumption:

 Figure12, CPU-intensive Code the five profile types

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

419

IJSER © 2019
http://www.ijser.org

IJSER

This function is specifically written to consume a lot of CPU cycles by running a tight loop:

main.go

func load() {

 for i := 0; i < (1 << 20); i++ {

 }

}

The function is called indirectly from busyloop() via four call paths: busyloop → {foo1, foo2} →

{bar, baz} → load. The width of a function box represents the relative cost of the specific call path. In

this case all four paths have about the same cost. In a real program, you want to focus on optimizing

call paths that matter the most in terms of performance. The flame graph, which visually emphasizes

the more expensive paths with larger boxes, makes these paths easy to identify.

You can use the profile data filter to further refine the display. For example, try adding a "Show stacks"

filter specifying "baz" as the filter string. You should see something like the screenshot below, where

only two of the four call paths to load() are displayed. These two paths are the only ones that go through

a function with the string "baz" in its name. Such filtering is useful when you want to focus on a subpart

of a bigger program (for example, because you only own part of it).

 Figure13, click "baz"

b. Memory-intensive Code

Now switch to "Heap" profile type. Make sure to remove any filters you created in previous

experiments. You should now see a flame graph where allocImpl, called by alloc, is displayed as the

main consumer of memory in the app:

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

420

IJSER © 2019
http://www.ijser.org

IJSER

 Figure14, allocated allocImpl function

The summary table above the flame graph indicates that the total amount of used memory in the app is

on average ~57.4 MiB, most of it is allocated by allocImpl function. This is not surprising, given the

implementation of this function:

main.go

func allocImpl() {

 // Allocate 64 MiB in 64 KiB chunks

 for i := 0; i < 64*16; i++ {

 mem = append(mem, make([]byte, 64*1024))

 }

}

The function executes once, allocating 64 MiB in smaller chunks, then storing pointers to those chunks

in a global variable to protect them from being garbage collected. Note that the amount of memory

shown as used by profiler is slightly different from 64 MiB: the Go heap profiler is a statistical tool, so

the measurements are low-overhead but not byte-accurate. Don't be surprised when seeing a ~10%

difference like this.

c. IO-intensive Code

If you choose "Threads" in the profile type selector, the display will switch to a flame graph where most

of the width is taken by wait and waitImpl functions:

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

421

IJSER © 2019
http://www.ijser.org

IJSER

 Figure15, call stack from the wait function

In the summary above flame graph, you can see that there are 100 goroutines that grow their call stack

from the wait function. This is exactly right, given that the code that initiates these waits looks like this:

main.go

func main() {

 ...

 // Simulate some waiting goroutines.

 for i := 0; i < 100; i++ {

 go wait()

 }

This profile type is useful for understanding whether the program spends any unexpected time in waits

(like I/O). Such call stacks would not be typically sampled by the CPU profiler, as they don't consume

any significant portion of the CPU time. You'll often want to use "Hide stacks" filters with Threads

profiles - for example, to hide all stacks ending with a call to gopark, since those are often idle

goroutines and less interesting than ones that wait on I/O.

The threads profile type can also help identify points in program where threads are waiting for a mutex

owned by another part of the program for a long period, but the following profile type is more useful

for that.

d. Contention-intensive Code

The Contention profile type identifies the most "wanted" locks in the program. This profile type is

available for Go programs but must be explicitly enabled by specifying "MutexProfiling: true" in the

agent configuration code. The collection works by recording (under the "Contentions" metric) the

number of times when a specific lock, when being unlocked by a goroutine A, had another goroutine B

waiting for the lock to be unlocked. It also records (under the "Delay" metric) the time the blocked

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

422

IJSER © 2019
http://www.ijser.org

IJSER

goroutine waited for the lock. In this example, there is a single contention stack and the total wait time

for the lock was 11.03 seconds:

 figure16, single contention stack and the total wait time

The code that generates this profile consists of 4 goroutines fighting over a mutex:

main.go

func contention(d time.Duration) {

 contentionImpl(d)

}

func contentionImpl(d time.Duration) {

 for {

 mu.Lock()

 time.Sleep(d)

 mu.Unlock()

 }

}

...

func main() {

 ...

 for i := 0; i < 4; i++ {

 go contention(time.Duration(i) * 50 * time.Millisecond)

 }

}

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

423

IJSER © 2019
http://www.ijser.org

IJSER

VII Conclusion
Stackdriver aggregates metrics, logs, and events from infrastructure, giving developers and operators a

fashionable set of discernible signals that speed root-cause analysis and scale back unit of time to

resolution (MTTR). Stackdriver doesn’t need intensive integration or multiple “panes of glass,” and it

won’t lock developers into employing a specific cloud supplier. we have a tendency to learned however

a Go program are often designed to be used with Stackdriver Profiler. we have a tendency to additionally

learned a way to collect, read and analyze the performance information with this tool. we are able to

currently apply your new ability to the $64000 services you run on Google Cloud Platform. Native

integration with Google Cloud information tools BigQuery, Cloud Pub/Sub, Cloud Storage, Cloud

Datalab, and out-of-the-box integration with all of your different application parts. Stackdriver is made

from the bottom up for cloud-powered applications. whether or not you’re running on Google Cloud

Platform, Amazon net Services, on-premises infrastructure, or with hybrid clouds, Stackdriver

combines metrics, logs, and data from all of your cloud accounts and comes into one comprehensive

read of your setting, therefore you'll quickly perceive service behavior and take action.

References

[1] https://cloud.google.com/profiler/docs/about-profiler

[2] https://medium.com/@duhroach/application-performance-management-with-stackdriver-

844300899d52

[3] https://cloud.google.com/blog/products/gcp/google-stackdriver-generally-available

[4] https://www.bizjournals.com/boston/blog/startups/2012/09/stackdriver-bain-capital-ventures.html

[5] https://www.site24x7.com/cloud-

monitoring.html?ad_src=google_asia_africa_search&ad_grp=cloud_monitoring&gclid=Cj0KCQjwr

MHsBRCIARIsAFgSeI1kSwgUkPvN0kwjcFJcU9kzmemRBPPTY1sN9Qo_oapp0-HJK-

FtNsQaAmmmEALw_wcB

[6] https://en.wikipedia.org/wiki/Stackdriver

[7] https://searchcloudcomputing.techtarget.com/definition/Google-Stackdriver

[8] https://cloud.google.com/stackdriver/

International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019
ISSN 2229-5518

424

IJSER © 2019
http://www.ijser.org

IJSER

https://cloud.google.com/profiler/docs/about-profiler
https://medium.com/@duhroach/application-performance-management-with-stackdriver-844300899d52
https://medium.com/@duhroach/application-performance-management-with-stackdriver-844300899d52
https://cloud.google.com/blog/products/gcp/google-stackdriver-generally-available
https://www.bizjournals.com/boston/blog/startups/2012/09/stackdriver-bain-capital-ventures.html
https://www.site24x7.com/cloud-monitoring.html?ad_src=google_asia_africa_search&ad_grp=cloud_monitoring&gclid=Cj0KCQjwrMHsBRCIARIsAFgSeI1kSwgUkPvN0kwjcFJcU9kzmemRBPPTY1sN9Qo_oapp0-HJK-FtNsQaAmmmEALw_wcB
https://www.site24x7.com/cloud-monitoring.html?ad_src=google_asia_africa_search&ad_grp=cloud_monitoring&gclid=Cj0KCQjwrMHsBRCIARIsAFgSeI1kSwgUkPvN0kwjcFJcU9kzmemRBPPTY1sN9Qo_oapp0-HJK-FtNsQaAmmmEALw_wcB
https://www.site24x7.com/cloud-monitoring.html?ad_src=google_asia_africa_search&ad_grp=cloud_monitoring&gclid=Cj0KCQjwrMHsBRCIARIsAFgSeI1kSwgUkPvN0kwjcFJcU9kzmemRBPPTY1sN9Qo_oapp0-HJK-FtNsQaAmmmEALw_wcB
https://www.site24x7.com/cloud-monitoring.html?ad_src=google_asia_africa_search&ad_grp=cloud_monitoring&gclid=Cj0KCQjwrMHsBRCIARIsAFgSeI1kSwgUkPvN0kwjcFJcU9kzmemRBPPTY1sN9Qo_oapp0-HJK-FtNsQaAmmmEALw_wcB
https://en.wikipedia.org/wiki/Stackdriver
https://searchcloudcomputing.techtarget.com/definition/Google-Stackdriver
https://cloud.google.com/stackdriver/

	III. Google Stackdriver's main features
	1) Stackdriver observation measures the health of cloud resources and applications by providing visibility into metrics like central processor usage, disk I/O, memory, network traffic and period of time. it's supported collectd, associate open supply ...
	2) Stackdriver Error reportage identifies and analyzes cloud application errors. A centralized error management interface provides IT groups with time period visibility into production errors with cloud applications, moreover because the ability to ki...
	3) Stackdriver computer programme inspects the state of associate application, deployed in Google App Engine or Google reason Engine, exploitation production information and ASCII text file. throughout production, snapshots may be taken of associate a...
	4) Stackdriver Trace collects network latency information from applications deployed in Google App Engine. Trace information is gathered, analyzed and wont to produce performance reports to spot network bottlenecks. Trace API and Trace SDK may be wont...
	5) Stackdriver work provides time period log management and analysis for cloud applications. Log information may be unbroken for extended periods of your time by archiving it with Google Cloud Storage. The service works with each Google and AWS, and m...
	IV. Profiler interface
	d. Contention-intensive Code
	VII Conclusion

